رهیافتی نو برای حل عددی چند رده از معادلات دیفرانسیل و معادلات انتگرالی ماتریسی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
- نویسنده عمران توحیدی
- استاد راهنما مرتضی گچ پزان فائزه توتونیان
- سال انتشار 1393
چکیده
در این رساله ابتدا با استفاده از چند جمله ای های برنولی و خواص آن ها ماتریس های عملیاتی مشتق، انتگرال و حاصلضرب چند جمله ای های برنولی ساخته می شوند و روش ماتریسی برنولی معرفی می گردد. سپس در اولین تلاش روش ماتریسی مذکور را برای حل عددی معادلات دیفرانسیل معمولی ماتریسی مرتبه اول به کار برده و کارایی این روش را نسبت به روش هم مکانی از طریق حل چند مثال عددی نشان می دهیم. همچنین حل عددی معادلات با مشتقات جزئی مرتبه اول و دوم ماتریسی با شرایط اولیه را در نظر گرفته و آنالیز همگرایی روش ماتریسی برنولی برای معادلات مذکور را بررسی خواهیم کرد. در انتهای این رساله نیز کاربرد روش مذکور را در حل عددی معادلات با مشتقات جزئی سهموی یک بعدی با شرایط مرزی غیرمحلی، معادلات با مشتقات جزئی سهموی دو بعدی با شرایط مرزی دیریخله، معادلات انتگرالی فردهلم یک بعدی و معادلات انتگرالی فردهلم دو بعدی شرح داده می شوند و در اینجا نیز کارایی روش جدید پیشنهاد شده نسبت به چند روش عددی دیگر از طریق حل مثال های عددی نشان داده خواهد شد.
منابع مشابه
پیادهسازی سختافزاری حل عددی معادلات دیفرانسیل روی FPGA
حل عددی معادلات دیفرانسیل با استفاده از بسترهای CPU و GPU مبتنی بر پیادهسازی نرمافزاری است. در سالهای اخیر، راهکار جدیدی مبتنی بر پیادهسازی سختافزاری معادلات با استفاده از بستر FPGA، بهدلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئلهی نوعی، شامل سیستم جرم و فنر و معادلهی موج، روش پیادهسازی سختافزاری برای حل معادلات دیفرانسیل بر ر...
متن کاملروش ماتریسی بسل برای حل عددی رده ای از معادلات دیفرانسیل-انتگرال خطی از مرتبه بالا
در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...
15 صفحه اولروش هاى چند گامی مستقل از مشتق برای حل عددی معادلات غیر خطی
در این مقاله٬ خانوادهای از روشهای چند گامی کارا و مستقل از مشتق را برای حل عددی معادلات غیرخطی بیان میکنیم. این روشهای چند گامی مبتنی بر چند جمله ای درونیاب نیوتن و روش تجزیه آدومیان[1] بهبود یافته میباشند. مرتبه همگرایی این روشها را محاسبه میکنیم و با استفاده از چند مثال کارایی روشهای چند گامی مستقل از مشتق را نشان میدهیم.
متن کاملروش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
متن کاملبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023